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Abstract—The electricity sector is facing the dual challenge
of supporting increasing level of demand electrification while
substantially reducing its carbon footprint. Among electricity
demands, the energy consumption of cryptocurrency mining
data centers has witnessed significant growth worldwide. If
well-coordinated, these data centers could be tailor-designed
to aggressively absorb the increasing uncertainties of energy
supply and, in turn, provide valuable grid-level services in
the electricity market. In this paper, we study the impact of
integrating new cryptocurrency mining loads into Texas power
grid and the potential profit of utilizing demand flexibility from
cryptocurrency mining facilities in the electricity market. We
investigate different demand response programs available for
data centers and quantify the annual profit of cryptocurrency
mining units participating in these programs. We perform our
simulations using a synthetic 2000 bus ERCOT grid model, along
with added cryptocurrency mining loads on top of the real-world
demand profiles in Texas. Our preliminary results show that
depending on the size and location of these new loads, we observe
different impacts on the ERCOT electricity market, where they
could increase the electricity prices and incur more fluctuations
in a highly non-uniform manner.

Index Terms—cryptocurrency mining, demand flexibility, elec-
tricity market, demand response

I. INTRODUCTION

With increasing electrification and integration of more re-
newable energy resources, power grid management is fac-
ing new challenges in terms of reliable and cost-effective
operation [1], [2]. Large supply-demand mismatches, high
price variations, and more frequent extreme weather events
could hinder further demand electrification and renewable
energy deployment. Demand flexibility plays a pivotal role in
addressing these challenges. Demand flexibility improves grid
reliability by closing the supply-demand mismatch gap and
providing reserve during large supply scarcity events [3]–[5]. It
is an essential component of energy transition and reduces the
need for large energy storage systems to mitigate the impact
of extreme weather events like the 2021 Texas power outage
[6]. To harness the benefits of demand flexibility, various
demand response programs are designed to change the normal
energy consumption patterns by shifting or reducing load in

certain hours. Demand response capacities of load resources
are then collected through demand response providers, which
are considered "virtual generators" authorized to participate in
most U.S. electricity markets [7]–[9].

An emerging source of flexibility in modern power sys-
tems is the cryptocurrency mining capacity of data centers.
Cryptocurrency mining, in particular, the bitcoin mining power
capacity has nearly doubled between 2019 and 2021, and
currently, its annual worldwide electricity consumption stands
at around 131 TWh [10]. Given their substantial demand
flexibility, they can help the grid achieve better load balancing
through capacity right sizing and load shifting. According
to Cambridge Centre for Alternative Finance [10], China’s
global hash rate, the computational power required to mine
new Bitcoins, fell from over 75 percent to 21 percent of the
worldwide total between September 2019 and January 2022. In
the same period, the United States hash rate share has notably
increased from nearly 4 percent to 37.8 percent, bringing up
its share of power capacity to 5.7 GW as shown in Fig. 1.

A conceputually similar type of demand flexibility can also
be obtained from Internet data centers. There exist a large body
of work on data center workload management and scheduling
to address operational cost minimization from data centers’
point of view [11]–[14]. In [12] the authors combine workload
scheduling and local power generation to perform demand
response by avoiding the coincident peak. In [15], a control
framework is presented to coordinate the cooling system,
workload execution, and energy storage for enabling demand
response participation. Another line of research is studying
utility companies’ optimal pricing mechanism to encourage
data centers’ participation in demand response [16]–[19]. A
comprehensive survey of the opportunities and challenges
for data centers participating in demand response can be
found in [20]. However, compared with Internet data centers,
cryptocurrency mining facilities exhibit a much higher degree
of flexibility as there is little or no time sensitivity in turning
on the mining facilities.

Within the United States, Texas is one of the most attractive
destinations for new mining facilities. Electricity costs are a
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Fig. 1: United States share of the global Bitcoin electricity
consumption and hash rate.

substantial part of mining facility expenditures, and the unique
characteristics of the Texas electricity market managed by
the Electric Reliability Council of Texas (ERCOT) provide
an opportunity to acquire cheap energy through bilateral con-
tracts. Renewable energy integration has also been growing,
particularly in West Texas, where there are abundant wind
energy resources. Extensive demand response programs in ER-
COT are another attractive characteristic that creates a revenue
stream for mining facilities with highly flexible demand. As a
result, there is approximately 1.5 GW of Bitcoin mining power
capacity active in Texas, which represents nearly 10 percent
of the global market, and it is also attracting around 2 GW of
additional Bitcoin mining capacity per year [21].

Rapid integration of the new Bitcoin mining loads, without
proper planning and infrastructure development, creates nu-
merous challenges for Texas electric grid. It has been shown
that even a low penetration of small scale cryptocurrency
miners can substantially increase the utilization of distribution
transformers [22] and increase power market price volatility
[23]. These large loads might violate physical transmission line
capacity constraints and impact grid reliability. Furthermore,
depending on the location and the size of mining loads,
they could potentially increase electricity prices in a highly
non-uniform manner. Due to the critical and disproportionate
effects of electricity prices on all market participants in
ERCOT, studying these new loads is of great necessity. The
unique attributes of the new loads, including high flexibility
and fast response time, make these types of studies different
from conventional loads. In this paper, we study the impact
of new mining loads on the synthetic ERCOT electric grid
and how their demand flexibility could help reduce grid
pattern disruptions. Our main contributions in this paper are
summarized as follows:

1) We introduce the role of cryptocurrency mining facilities
in the ERCOT electricity market, their interaction with
other stakeholders, and how they can utilize their de-
mand flexibility by participating in the relevant demand
response programs. The annual per-unit profit for one
MW of demand flexibility is quantified and simulated,
considering the influential parameters including Bitcoin
price, electricity price, mining difficulty (amount of elec-

tricity needed for mining a single Bitcoin), and predicted
demand response deployment rate.

2) The decisive impact of new cryptocurrency loads inte-
grated into ERCOT is studied using a 2000 bus synthetic
grid model to simulate the real-time ERCOT electric-
ity market. The Security-Constrained Unit Commitment
(SCUC) and Security-Constrained Economic Dispatch
(SCED) problems are solved to obtain locational marginal
prices. To maximize the cryptocurrency mining data cen-
ter’s profit for participating in different demand response
programs, we formulate their decision-making process as
an optimization problem.

3) We choose 3 locations with multiple mining facilities in
the synthetic Texas grid to integrate different amounts
of new cryptocurrency mining demand on top of the
typical demand profile in ERCOT. The tempo-spatial
properties of Locational Marginal Prices (LMPs) are
analyzed by adding new mining loads with different
capacities and across multiple locations. Our results show
that integrating these new loads substantially increases
the electricity prices during peak hours. Our county-level
electricity price analysis suggests that this impact highly
depends on the size and location of the new loads and
the transmission line capacity constraints.

In Section II potential demand response programs for mining
facilities are introduced. In Section III we explain the ERCOT
electricity market structure, various entities interacting with
cryptominers, and the importance of large load interconnection
studies. The problem formulation for cryptocurrency mining
facility participation in demand response programs is pre-
sented in Section IV. Section V introduces the synthetic 2000
bus grid model used in our study and the experiment set-
up for running the simulation. The results and findings of
our simulations are presented in Section VI. Section VII
discusses the importance of our findings and the possible
implications of these results on long-term policy planning.
Finally, Section VIII concludes the paper.

II. DEMAND RESPONSE PROGRAMS

In ERCOT, Bitcoin mining loads are considered Control-
lable Load Resources (CLRs), which are eligible to perform
all ancillary services and participate in the real-time energy
market [27]. Here we present the most prominent demand
response programs available for mining facilities in Texas.

A. Ancillary Service Market

In ERCOT electricity market, load resources are authorized
to participate in the ancillary service market to perform Re-
sponsive Reserve Service (RRS), non-spinning reserve service,
and regulation up/down. Among these services, the largest one
is RRS, where the load is automatically cut off by under-
frequency relays or manually interrupted within a ten-minute
notice in case of need for load reduction [28]. RRS is proven
to be very impactful, and during the Texas power outage of
February 2021, load resources providing RRS reduced their
consumption by more than 1,400 MW [29].



TABLE I: Characteristic of demand response programs in ERCOT [24]–[26]

Average Price ($/MWh) Total Capacity Procured (MW) Procurement Time-Scale

RRS 11.27 1564 Day-ahead
ERS 6.03 925 4 months
Price-driven program specific 2800 program specific

Fig. 2: ERCOT electricity market structure and the entities
interacting with cryptocurrency mining facilities.

B. Emergency Response Service (ERS)

While RRS is activated during large supply scarcity events,
there is another demand response program in ERCOT called
Emergency Response Service (ERS), which is only deployed
as the last reserve to avoid load shedding during grid emer-
gencies. In addition, ERS is not an ancillary service, and it
is procured by ERCOT four times a year in two different
response times of 10 and 30 minutes [27]. On average, ERCOT
keeps around 1,000 MW of ERS resources as emergency
reserve [27].

C. Price-Driven Demand Response

In addition to providing reserve in electric energy systems,
incentive-based and price-responsive load management pro-
grams are designed to exploit the elasticity of industrial and
residential loads during high electricity price hours [30]–[32].
These programs are mostly administered by Transmission and
Distribution Service Providers (TDSPs). An essential goal of
these programs is to keep the electricity prices in the system as
low as possible. For instance, in the 4-Coincident Peak (4CP)
program in ERCOT, the single monthly 15-minute system peak
during each of the four months from June through September
is set, and the 4CP charge for distribution service providers is
determined by calculating their load during ERCOT’s monthly
demand peak. To avoid these substantial charges, load entities
seek to reduce their demand by offering incentives and rewards
depending on the system condition. According to ERCOT, the
4CP load reduction capacity during peak hours is up to 2,800
MW [25]. The most prominent aspects of demand response
programs are compare in Table I.

III. ERCOT ELECTRICITY MARKET STRUCTURE

A. Market Participants

There are various entities with different objectives interact-
ing in ERCOT electricity market. In the following subsections,
we present the key entities influencing mining facilities.

• Qualified Scheduling Entities (QSEs) are authorized to
submit bids and offers for resource entities to sell energy
or on behalf of load serving entities to purchase energy
in the day-ahead and real-time markets. As shown in Fig.
2 QSEs are also qualified to represent cryptocurrency
miners and participate in the ancillary service market or
submit ERS bids on their behalf. If an offer is accepted
by ERCOT, the QSE gets paid according to the settlement
price. In addition, QSE is responsible for mining facility
modeling, telemetry, and possible outage scheduling.

• Load Serving Entities (LSEs) are authorized to rep-
resent competitive retailers selling electricity to retail
customers. Load forecasting and negotiating with power
producers to buy cheap energy is done by LSEs, and they
participate in the wholesale market through a QSE, as
shown in Fig. 2. It can also be seen that mining facilities
usually acquire their electricity services through an LSE,
and their electricity gets delivered by Transmission and
Distribution Service Providers (TDSPs).

• Cryptocurrency Miners are capable of participating in
various demand response programs. As demonstrated in
Fig. 2, some of these programs are administered by
TDSPs, which handle operation scheduling and profit
management. On the other hand, if the mining facility
wants to participate in the ancillary service market or
provide ERS, their corresponding QSE submits their offer
and communicates their possible operational details.

• ERCOT is in the center of the electricity market opera-
tion in Texas, and it handles both physical supply-demand
balancing management and the market clearing process.
As it can be seen from Fig. 2, QSEs submit electricity
sale offers of generation units and power purchase bids
of the LSEs to ERCOT, and after performing the market
clearing process, ERCOT returns the settlements along
with the operational control signals of the generation units
through QSEs. At the same time, ERCOT communicates
operational control signals with TDSPs to ensure safe and
economic grid operation.

B. Large Flexible Load Interconnection in ERCOT

The rate of cryptocurrency mining data center integration
into ERCOT grid is faster than standard transmission network
expansion plans. In addition, due to their large flexibility,



Fig. 3: Large load interconnection request projection in ER-
COT between 2022 and 2026 [33].

voltage control of these loads and their disruptive impact on
the electricity market are vastly different from conventional
static loads. Hence, it is imperative for the miners, policy-
makers, and grid operators to study their interconnections and
plan accordingly. Depending on the location and the size of
the new mining facilities being built in Texas, we observe
substantially different impacts on the grid. If they are relatively
small they have minor impacts, but if they are larger, they
increase transmission congestion and electricity prices, and
finally if they are very large they push the system solution
into infeasibility. In our case study, we observed all three
cases when installing different load sizes across the synthetic
Texas grid. To ensure safe integration of large cryptocurrency
mining loads into the system, transmission service providers
are required to perform interconnection studies for new loads
not co-located with a resource with total demand of 75 MW
or greater or co-located with a resource with total demand of
20 MW or greater [34]. As shown in Fig. 3 the request for
large load interconnections is growing fast, and it is expected
that between 2022 and 2026, ERCOT will receive requests to
add more than 17 GW of these new large loads.

IV. PROBLEM FORMULATION

With multiple demand response programs available for
cryptocurrency mining data centers, they seek to find the
optimal combination of these programs that maximizes their
profit. This section formulates cryptominers demand response
portfolio selection as an optimization problem. Consider a
scenario in which we have a data center with a mining capacity
of C (MW) at any given time. The market is constantly
changing, and the cryptominer observes a different electricity
price, cryptocurrency price, and demand response profit at
each time slot t, where the set of time slots is denoted
by T := {1, ..., T}. Let us denote N := {1, ..., N} as
the set of all possible demand response programs available

for the cryptominer, and ci ≤ C as the demand response
capacity obligation of the data center under program i, where
i ∈ N . We denote p̂i(t) as the expected per-unit revenue of
participating in the ith demand response program at time t,
and p̂(t) := (p̂1(t), p̂2(t), ..., p̂N (t)) captures this value for
all demand response programs. Depending on the program
structure, the real-time participation revenue is calculated in
different ways. If the cryptominer participates in ERCOT
ancillary service market, p̂i(t) is the market clearing price,
and if it has a long-term contract like ERS, p̂i(t) is calculated
according to agreed upon contract specification.

We denote d̂i(t) as the expected deployment rate of
the ith demand response program at time t, and d̂(t) :=
(d̂1(t), d̂2(t), ..., d̂N (t)) as the expected deployment rate pro-
file of all demand response programs, where 0 ≤ d̂i(t) ≤ 1.
This value captures the fraction of the committed capacity
that is being deployed at each moment. Hence, cid̂i(t) is the
expected deployed capacity under the ith demand response
program at time t. It should be noted that demand response
deployment rate is highly uncertain, and depending on the type
of program, deployment rate follows different distributions, but
here we assume that we are able to obtain its expected value.

Finally we define r̂(t) as the expected per unit net reward of
mining cryptocurrency at time t for one unit of electricity. This
reward is calculated as r̂(t) = p̂b(t) − p̂e(t), where p̂b(t) is
the expected revenue obtained from selling the cryptocurrency
mined using one unit of electricity, and p̂e(t) is the expected
per-unit electricity cost. For example, if at time t it takes
143MWh to mine a Bitcoin and the price for one Bitcoin is
$25, 000, we calculate p̂b(t) as 25000$/BTC

143MWh/BTC ≈ 175$/MWh.
Now we proceed by introducing our cryptominer optimal
demand response portfolio selection problem as follows:

max
[ci]Ni=1

N
∑

i=1

T
∑

t=1

[

cip̂i(t)− cid̂i(t)r̂(t)
]

(1a)

s.t. ci ≥ 0, and

N
∑

i=1

ci ≤ C, for i ∈ N , (1b)

where cip̂i(t), and cid̂i(t)r̂(t) are the expected revenue and
loss of participating in the program i, respectively. In this
formulation

∑T
t=1 cid̂i(t)r̂(t) captures the total loss of revenue

due to not mining Bitcoin during deployment in the ith
demand response program. Hence when this value is large,
it is not beneficial to participate in the demand response
program. Constraint (1b) assures that the sum of participation
capacity in all demand response programs does not exceed
the mining capacity of the data center. As shown above,
our objective is to maximize cryptominer’s expected profit
by choosing the optimal combination of different programs,
where decision variable (c1, c2, ..., cN ) is the demand response
capacity profile of the cryptominer. It should be noted that this
decision is highly related to how many times and how much
the operator deploys the cryptominer in each demand response
program. In our setting, we assume that the demand response
participation profile stays the same during each interval [1, T ].



However, our formulation could be easily extended to capture
a more general setting, where the capacity of each program
ci changes over time. This turns our problem formulation into
an online optimization that is capable of fully capturing the
uncertainty involved in the decision-making process. Solving
the online optimization version is out of the scope of this work,
so we assume that an expected value of the future parameters
is obtained through prediction and historical records.

It is worth noting that the optimization problem (1) is in the
form of linear programming, and by applying the principles
of the simplex method, the inequality constraints define a
polygonal region, where the solution is at one of the vertices.
Hence, the optimal solution in this setting is either not to
participate in any demand response program or participate
with full capacity C in the one with the maximum expected
profit. This optimization problem is solved using the predicted
information in the time horizon [1, T ]. However, in our sim-
ulations, instead of utilizing predicted future information, we
use a synthetic grid model and simulate the electricity market
to obtain the actual value of all the information needed to
quantify the profit of various demand response programs and
compare their performance under different scenarios.

V. SYNTHETIC GRID AND EXPERIMENT SET-UP

To observe the impact of adding new mining loads and pos-
sible demand response programs, we use a large-scale open-
source synthetic grid that has been developed and calibrated to
match the actual Texas grid [35]–[37]. This is one of the largest
publicly available synthetic grid models (2000-bus) equipped
with various features. Researchers have been adding public
open-access data sets such as generator capacities, wind and
solar generation profiles, and hourly demand profiles to this
model, in order to help statistically match the real grid [38]. In
this project, we are using the electricity market model built on
top of the synthetic grid model in [37]. This model has been
shown to provide a realistic representation of electricity market
behavior and the optimal electricity prices across Texas.

The topology of the Texas 2000-bus synthetic grid is shown
in Fig. 4. Observe that many buses (nodes) are clustered
around the centers of population, and there are 254 counties in
Texas, among which 63 counties are not monitored by ERCOT
during the period considered in this study and are colored in
black. Locations of renewable generators are highlighted in
Fig. 4 and note that most renewable generators are located in
western regions due to rich availability of renewable energy
sources. Due to the rich source of renewable energy sources,
it is also advised to locate mining facilities in western regions.
The load and generation profiles for the year 2020 are obtained
to implement our simulation.

In power grids, a security-constrained unit commitment
(SCUC) problem is solved using day-ahead predictions to
determine which units are supposed to be committed for
the next day. In large-scale power systems, because of the
generation units with slow ramping rates, it is necessary to
solve the SCUC with bulk estimate predictions in the day-
ahead market. After determining active generators, a security-

Fig. 4: The topology of Texas synthetic grid.

constrained economic dispatch (SCED) problem is solved in
real-time with more accurate predictions. SCED problems
provide a more precise generation planning and determine
the real-time locational marginal prices at every node. By
solving SCUC and SCED problems in the synthetic grid
model, wholesale and retail electricity markets are formulated,
and LMPs are obtained over a period. The LMP represents the
electricity price ($/MWh) at a particular location (bus), which
is defined as the extra cost incurred to serve an additional unit
of load at that location. There is widely available software such
as MatPower [39], a Matlab package for solving power flow
and optimal flow problems, and MatPower Optimal Schedul-
ing Tool (MOST) for optimally scheduling generating units.
MatPower and MOST are used to solve SCUC and SCED
problems in the simulation. Note that SCUC and SCED prob-
lems require load profiles and renewable generation profiles (or
estimates of them), and they build foundations of wholesale
and retail electricity markets. In practice, there are additional
layers and legacies for reliable and efficient operations of
physical systems and electricity markets, however, we take
a simple form of electricity markets.

VI. SIMULATION RESULTS

Both location and capacity of mining facilities play decisive
roles and clearly have disruptive impacts when integrated into
transmission grids. We investigate the disruptions of mining
facilities in the synthetic grid, and potential roles and benefits
of demand response for mining facilities in electricity markets.
In this case study, a summer period of 61 days (Days 180 -
240) is considered since the summer period has the highest
demand during a year and is often considered the most
interesting time period to study.



A. Disruptions by Mining Loads

SCUC problems are solved in a default setting without
additional mining loads as a baseline for comparison. SCUC
problems are also solved with additional mining loads, es-
pecially emphasizing two characteristics of mining facilities
relevant to transmission grids (namely locations and capaci-
ties) as follows. Three sets of locations for mining facilities
are considered, as highlighted in Fig. 4. Locations of mining
facilities are arbitrarily chosen yet in close proximity to the
locations of renewable generators in the grid. Locations can
support different amounts of additional mining loads, i.e.,
locations have different hosting capacity limits. For example,
some locations may be able to safely host up to additional
600MW without a major upgrade to the system, while other
locations may only be able to host up to additional 100MW.
Thus, different total capacities of mining loads are tested out
together with three sets of locations to understand disruptions
induced by mining facilities.

Moreover, we assume that mining facilities are consuming a
fixed amount of loads for all time steps. For example, suppose
there are six mining facilities, and they consume a total of
600MW in the study period (Days 180 - 240). Then, each
mining facility uniformly and equally consumes 100MW over
61 days. Given both location and capacity of mining facilities
determined, SCUC and SCED problems are solved to choose
online/offline status of generating units and LMPs. There are
three locations (Locations A, B, C) for mining facilities in
Fig. 4. In Location A, there are six mining facilities and total
capacities 360MW, 480MW, 600MW, 720MW, 840MW are
tested (each mining facility equally consumes 60MW, 80MW,
100MW, 120MW, 140MW, respectively); In Location B, there
are six mining facilities and total capacities 600MW, 720MW,
840MW, 960MW are tested; In Location C, three values of
total capacity 50MW, 100MW, 150MW are tested; Lastly, a
combination of Location A and B is considered that there
are 12 mining facilities and total capacities 600MW, 720MW,
840MW, . . . , 1440MW are tested (each mining facility
consumes 50MW, 60MW, 70MW, . . . 120MW respectively).

It is rightfully possible that mining facilities apply more
sophisticated load control strategies (or policies). For exam-
ple, load control strategies may be temporally and spatially
reasoned that they consume more during non-peak hours and
consume less during peak hours, consume more in a particular
region and consume less in another region. However, we
restrict to a simple load control strategy that facilities consume
a fixed uniform amount of loads for simplicity.

B. Impacts of Mining Loads on LMP

Remark that LMP is a locational (nodal) price signal at each
operating time. We investigate two aspects of LMP, namely the
average LMP and hourly LMP, defined as follows. At each
time, the average LMP is a value that is averaged over 2000-
bus, and the average LMP is investigated over a summer period
of 61 days (Days 180 - 240). On the other hand, hourly LMP
is averaged again over 61 days for each hour.

The average LMP without additional mining loads is shown
in Fig. 5a for Days 180 - 240. Note that there are several
hours that the average LMP is above $100/MWh. Now, market
disruptions of mining facilities are considered. In Location A,
there are six mining facilities, and different total capacities
360MW, 480MW, 600MW, 720MW, 840MW are tested out.
The average LMP with total capacities 600MW, 720MW,
840MW of mining loads in Location A is shown in Fig. 5b
- 5d respectively. Observe the peaks of graphs in Fig. 5b -
5d are significantly higher than the peaks of a graph in Fig.
5a. The average LMP with total capacities 360MW, 480MW
of mining loads in Location A is similar to but still generally
higher than the average LMP in Fig. 5a. These results are not
present to save space.

When total mining loads are higher than 720MW in Lo-
cation A, SCUC problems start to face “failed to converge“
in numerical software. Although “failed to converge“ in nu-
merical software does not always imply that SCUC problem
is infeasible because it is possible that the solver is unable to
find a solution, it is also observed that higher total capacity
renders it failed to converge more frequently. When 840MW,
960MW are tested out in Location A, SCUC problems with
840MW failed to converge 18 days while SCUC problems
with 960MW failed to converge 42 days, which is a certificate
that the system is pushed towards its limits. Thus, we believe
SCUC problems are at the limit boundary (close to infeasible
operating point) around the total capacity of 720MW in
Location A with the load control strategy.

Second, market disruptions of mining facilities in Location
B are considered. There are six mining facilities, and different
total capacities 600MW, 720MW, 840MW, 960MW are tested
out. The average LMP with total capacities 840MW, 960MW
of mining loads in Location B is shown in Fig. 5e - 5f
respectively. Observe that the average LMP in Fig. 5e - 5f
is generally higher than the average LMP in Fig. 5a.

Now, market disruptions of a combination of mining facil-
ities in Location A and B are considered. There are twelve
mining facilities in Location A and B and total capacities
960MW, 1080MW, . . . , 1440MW are tested, i.e., each facility
equally consumes 80MW, 90MW, . . . , 120MW, respectively.
Hourly LMP for a combination of Locations A and B is
shown in Fig. 6 where market disruptions by mining loads
are summarized.

Observe in Fig. 6a that hourly LMP of Baseline (without
mining loads) is consistently lower than hourly LMP with
mining loads in Location A. It is observed that the higher
the total capacity, the higher the hourly LMP, especially during
peak hours (3pm - 7pm) that hourly LMP significantly changes
during peak hours by mining loads, while the hourly LMP is
similar during non-peak hours. Moreover, there is a significant
change in hourly LMPs between total capacity 720MW and
840MW in Location A. This is largely because the average
LMP could significantly change due to system constraints
such as transmission line constraints, which create non-linear
changes on LMP. Hourly LMP for mining facilities in Location
B shows similar results that the higher the total capacity, the
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Fig. 5: The average LMP ($/MWh) with changing locations and capacities of mining facilities in Texas synthetic grid.
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Fig. 6: Hourly LMP ($/MWh) with changing locations and capacities of mining facilities in Texas synthetic grid.

(a) 720MW mining loads in Location A (b) 960MW mining loads in Location B

Fig. 7: County-level LMP ($/MWh) before and after adding mining loads.



TABLE II: LMP characteristics of different settings.

Average LMPs ($/MWh) LMPs during 3-5 pm ($/MWh) LMP standard deviation

Baseline (without mining load) 27.18 42.60 11.63
Location B with 840MW load 27.95 48.04 13.42
Location A with 840MW load 30.19 49.10 51.06

higher the hourly LMP, as shown in Fig. 6b. Hourly LMP for
mining facilities in Locations A and B is shown in Fig. 6c
that bears the same message.

We mark the importance of locations in electric power
grids when integrating a new load resource. Under the load
control strategy, we report that Location C has significantly
less hosting capacity that it starts to face “failed to converge“
for far less total capacity compared to Locations A and B.
In Location A, total capacities 360MW, 480MW, 600MW,
720MW, 840MW are tested out, and 0, 0, 0, 0, 6, 18 days
“failed to converge“ out of 61 days, respectively; In Location
B, total capacities 600MW, 720MW, 840MW, 960MW are
tested out, and 0, 0, 0, 4 days “failed to converge“ out of
61 days respectively; In Location C, total capacities 50MW,
100MW 150MW are tested out, and 2, 44, 59 days “failed to
converge“ out of 61 days respectively; Without mining loads,
61 days are all feasible. Thus, we conclude that Location
C has significantly less hosting capacity limits compared to
other locations under the load control strategy. Although it is
definitely possible that the hosting capacity limit will increase
with more sophisticated load control strategies in Location C,
however, it is also possible that other locations would have
higher hosting capacity.

Lastly, the impact of integrating new mining loads on
electricity market is twofold. It increases average LMPs, while
also creating large price fluctuations. As shown in Table II,
with adding new mining loads in Location A, we observe an
average increase of nearly $3 in electricity prices. However,
this average is taken across all hours, so while the average
price increase might seem insignificant, the increase in peak
hour prices is substantially higher, as shown in Fig. 6. In
particular, in Location A for average LMPs between 3pm
and 5pm, we observe an increase of $6.5, as shown in
Table II. In this table, the standard deviation of hourly LMPs
characterizes price fluctuations created by mining loads. It is
worth noting that new loads in Location A create significant
price fluctuations as compared to baseline and Location B.
Hence, the value and necessity of demand response is greater
in Location A.

It is worth noting that although we do not explicitly compare
different demand response algorithms, our simulation results
compare the existing system without mining loads versus hav-
ing different amounts of mining loads. For example, in Fig. 6b,
the amount of mining load changes between 0 and 840 MW.
It can be easily seen that when mining facilities participate
in a demand response program, their operational capacity and
impact on the grid lie within our possible scenarios.

C. County-wise Locational Marginal Prices

Previous subsection introduces temporal properties of LMP
over a summer period, whereas this subsection introduces
spatial properties of LMP on a map of Texas. County-level
LMPs are illustrated on a map of Texas to visualize the
disruptive impacts of mining loads and spatial properties of
LMPs. Each county includes more than one node (bus), so to
obtain the county-level LMP, LMPs are averaged over buses
in each county.

Two snapshots are taken in the study period that we closely
look at, Day 197 and 240. County-level LMPs are shown in
Fig. 7a and 7b and each figure shows county-level LMPs with
and without additional mining loads. It is observed in the
figures that there is a significant increase in electricity prices
for many counties. Additional 840MW of mining loads in
Location A makes significantly high LMPs for many counties
at 2-3pm Aug 27, 2020 (Day 240). Similarly, additional
960MW of mining loads in Location B makes significantly
high LMPs for many counties at 4-5pm July 15, 2020 (Day
197). Significant changes are due to transmission line physical
constraints, which create a non-linear effect on the LMPs
across the system. Thus, price volatility induced by mining
loads can easily disrupt many other market participants in elec-
tricity markets. Mining loads, thus, may hold responsibilities
as well as potential for ancillary services, including demand
response programs, due to its property that it is non-essential
and non-critical and thus, can be interrupted.

D. Quantifying Demand Response Profit

This section aims to quantify the profit of participating
in demand response for cryptomining facilities. The profit is
calculated as the reward from participating in demand response
subtracted by the loss of not mining cryptocurrency during de-
ployment. While RRS and ERS resources are deployed during
large supply scarcity and grid emergency events, price-driven
demand response is designed to keep the average LMPs across
the system as low as possible. In this program, if the average
LMP goes beyond a certain threshold, the system operator
deploys these resources. Cryptomining facilities participating
in price-driven demand response are rewarded according to
their availability, independent of deployment. Mining facilities
prefer larger deployment thresholds because it leads to less
frequent deployments, giving them more time to keep mining.

ERS and RRS deployment records and their corresponding
reward data are obtained from ERCOT [24]–[26], and we
assume that the reward of the price-driven demand response
is equal to the average hourly LMPs. This is a reasonable
assumption because the need for demand response is closely
tied with average LMPs in the system, so when electricity



Fig. 8: Annul per unit profit for one MW of demand response
capacity. The x-axis is the price threshold in which the grid
operator deploys demand response resources, and the y-axis
is the annul per unit profit.

prices increase, the demand response rewards also increase.
We obtain bitcoin price records from [40] to calculate the loss
of revenue during demand response deployments. Using this
information, and by running the synthetic electricity market
with 840MW of added mining load in Locations A and B,
we calculate hourly LMPs and compare the annual profit of
participating in ERS, RRS, and price-driven demand response.
In real-world, electricity prices are highly uncertain, and to
capture this uncertainty, we obtained ERCOT electricity price
records for the year 2019 to 2021 from [41] and used their
distribution to add random noise on top of the hourly LMPs
obtained by solving SCED. We repeat our simulations 1000
times and calculate the mean, upper bound, and lower bound
of the demand response profit.

In Fig. 8 the annul per unit profit for one MW of demand
response capacity is plotted. The x-axis is the LMP threshold
in which the demand response resources would be deployed,
and the y-axis is the per-unit profit. The deployment of ERS
and RRS is independent of the threshold, so they get constant
earnings of nearly $50k and $100k per year, respectively. For
price-driven demand response, the larger the threshold, the less
deployment there is, which means the miners keep mining,
and they get more profit. The upper and lower bounds of the
price-driven demand response are also shown in Fig. 8, where
their difference comes from added noise on top of the hourly
LMPs and shows the impact of price uncertainty on the annual
profit. It is worth noting that in Fig. 8 the annual profit of
price-driven demand response for cryptominers in Location
A is more than Location B. This is because, for the same
amount of cryptomining loads, the increase in electricity prices
in Location A is more substantial than B. Hence, performing
demand response in Location A is more valuable, as suggested
by our results in Table II. It can be seen that ERS and RRS are
risk-averse programs, while price-driven demand response has

a more dynamic structure. If the deployment threshold of the
program is too small, resources would be deployed frequently,
which might lead to negative profits, as shown in Fig. 8.

VII. DISCUSSION

In this section, we summarize our findings and discuss the
possible implication of our results. With added cryptomining
loads comes the possibility of higher LMPs and more price
fluctuations. The impact of these loads on LMPs is inherently
different depending on the location of the loads. By careful
reduction of cryptomining loads during certain hours in spe-
cific locations, one could potentially mitigate these adverse
impacts. There are public expectations for cryptominers to
actively participate in demand response programs, and the
numerical results show that it could be a win-win strategy
for both cryptominers and the system operator. Miners could
create a substantial revenue stream by providing flexibility,
which in turn reduces electricity prices across the system.

Integration of new mining loads into any power grid requires
extensive interconnection analysis and infrastructure planning.
This type of planning goes beyond grid operators and energy
sector. The policymakers face the dual challenge of keeping up
with the fast pace of the cryptomines moving into Texas while
ensuring that the infrastructure is ready and the grid security
is not compromised. Without proper planning, these loads
could increase electricity prices, impact voltage and frequency
control in the system, and affect grid reliability, particularly
during summer peak hours. Currently, there are abundant wind
energy resources in West Texas, and co-locating mining loads
with these resources could potentially help the grid by reduc-
ing renewable curtailment and avoiding major investments in
developing new transmission lines connecting West Texas to
other regions. Our results suggest that because of the decisive
impact of location, it is imperative to design proper incentives
encouraging new mining facilities to be built in places with
greater societal benefits. Having mining facilities invest in
renewable generation units to cover a certain percentage of
their operational capacity could also help reduce their carbon
footprint, and locational marginal prices.

VIII. CONCLUSION AND FUTURE WORK

This paper investigated the impact of integrating new cryp-
tocurrency mining loads on a synthetic Texas power grid. We
formulated and analyzed how this demand flexibility could
improve grid reliability by participating in demand response.
The importance of large load interconnection studies to ensure
reliable and optimal grid operation was discussed. Our results
suggest that the impact of new mining loads on increasing
price fluctuations is highly non-uniform. We also quantified the
potential profit of participating in different demand response
programs for mining facilities. Future work will examine the
impact of cryptocurrency miners co-located with other sources
in the energy system. Another interesting future direction is
to design proper incentive mechanisms in electricity markets
to maximize the value and participation of mining loads in
provision of demand flexibility.
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